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Abstract. Results of a theoretical and experimental investigation into new effects in moving-media optics are pre-
sented. An exact analytical solution is obtained for the trajectory of the wave vector of a monochromatic elec-
tromagnetic plane wave in a medium undergoing a complex motion. It is shown that the spatial dragging of
the electromagnetic wave by the moving medium can be described correctly in the general case only if relativ-
istic terms of order A2 are taken into account. Also, in this investigation a spatial effect of the light drag was
observed at a wavelength of A=063299um by means of an optical disk with a refractive index n=14766, a
radius of Ro=006m rotating at a frequency of w=25Hz. A relative shift of the interference pattern, monitored
by the time of the interference band motion across the aperture of a photodetector for the disk rotating in the
opposite directions, amounted to AR =00076+00030 of the interference bandwidth. The results of theoretical
calculations of the expected interference pattern shift on the basis of the total solution of the dispersion equation
in the experiment are in agreement with the experimental results. Analysis of the results obtained suggests that
the detected effects determine a wide class of observed phenomena, even when the velocities of moving media are
non-relativistic.
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1. Introduction

Moving-medium optics, besides the classical effects of Sagnac, Fizeau and Doppler, also pre-
dicts the following phenomena: violation of Snell’s law, rotation of the polarization plane of
an electromagnetic wave when it is reflected from a moving boundary of two moving media,
variation of the amplitude of the passing and the reflected wave, and distortion of a wave-
vector trajectory of light in a medium undergoing a complex motion.

A curvature of the trajectory of an electromagnetic wave arises in the Sagnac experiment
[1] when the refractive index of the medium between mirrors satisfies the condition n>1, on
leaving the moving frame of reference of the radiation source and detector. If the latter con-
dition does not hold, this system is independent of the refractive index in the non-relativistic
approximation, as was correctly pointed out in [2, 3).

Evidently, to describe the effect of distortion of the trajectory of an electromagnetic wave,
it is necessary to use the solution of the dispersion equation of moving-medium optics for
the spatial case of medium motion. Hence, the solution of the dispersion equation has been
experimentally tested in special cases only.

In Sagnac-type interferometers an interference-pattern shift arises, which in the first place
is attributable to cinematic motion of mirrors. A review of works on the Sagnac effect
and the equations describing the electrodynamics in rotating frames can be found in [4].
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If the velocity of the medium has no tangential component (u3 =0, uz, #0), there is a
longitudinal entrainment as found in the classic Fizeau experiment [5]. The Fizeau effect is
considerably weaker than that of Sagnac. Hence, as was noticed by Arditty [6], using the rest
frame of the interferometer avoids the need to take into account Fizeau and Doppler effects.

In the work of Bilger et al [7], where light propagates in a rotating disk in a ring interfer-
ometer, the Fizeau effect appears, but the authors did not take into account that Snell’'s law
is violated on the media boundary (it is a tangential break of velocity on the plane surface
of the disk). Our calculation shows that the additional [P shift should be close to 20% of the
general Fizeau effect.

Part of the experiments [8, 9] was devoted to attempts to estimate and measure a disper-
sion term in Frenel’s and Lorent’s formulae for fiber-optical gyroscopes. Using a low-loss fiber
and very long waveguide as the beam path in ring interferometers, one can measure the rota-
tional Fizeau drag effect. The experimental results of Vali er al [10] are accurate enough to
detect the presence of the dispersion term in the drag coefficient.

Some experiments [11] gave results that agree well with the solution of the electrodynamic
equations for moving media with normal velocity component of the media boundary. However,
these experiments constituted an experimental test of only that part of the equations which is
associated with the motion of the interface, not of the medium itself. The passage of an elec-
tromagnetic wave through a medium with rotation opens up the possibility of an experimental
test of the part of the solution of the dispersion equation which contains terms with uy, and
Uzy.

In the present work, the case when a light source, a receiver and a moving medium are in
different frames is considered. In this case it is more effective to apply the theoretical appara-
tus of electrodynamics of moving media, which is based on the solution of dispersion equa-
tions complemented with boundary conditions.

The solution of the dispersion relation for the propagation of an electromagnetic wave in
a medium is valid for an atomic layer with a thickness on the order of a few wavelengths of
the electromagnetic radiation [12, pp. S0-51 (Russian ed.)]. For analysing each layer of the
medium, the only properties available are the frequency wp and the angle of incidence on the
interface between two media, ¥¢. The motion of a given layer of the medium affects the coor-
dinates of the point at which the wave front intersects the next layer. In general, for a region
of the medium in which the velocity is not constant, it is necessary to solve a dispersion equa-
tion for each neighboring local region of the medium. The complete solution is the set of
local solutions for the regions in which the velocity of the medium is constant to within the
physically necessary accuracy.

The propagation of electromagnetic radiation in a rotating medium is determined by the
superposition of the primary wave and secondary waves appearing as a result of the interac-
tion of the electromagnetic radiation with atoms of the moving medium. By solving a dis-
persion equation, it is possible to determine the radiation-wave vector in any local region
of the trajectory with an allowance for the spatial distribution of the medium velocity. The
validity of the solution has been repeatedly confirmed by experiment, but the complexity of
such investigations allowed only certain particular cases to be studied, such as the longitudi-
nal Fizeau effect and the normal velocity break, in which the light beam is affected by either
normal or tangential components of the medium velocity.

Propagating in a rotating medium, an electromagnetic wave is affected simultaneously by
both normal and tangential components of the motion. Therefore, experimental observation
of the spatial effect of the light-wave entrainment confirms the validity of the total solution
of the dispersion equation.



Propagation of electromagnetic waves 241

In this article a new relativistic effect is studied for a medium with permittivity & and mag-
netic permeability x undergoing a rotation w. This effect is the curvature of the trajectory
traced out by a monochromatic plane electromagnetic wave.

An exact analytical solution is obtained for the trajectory of the wave vector of a mono-
chromatic electromagnetic plane wave in a medium with nonsimple motion (translational
flow). It is shown that the spatial drag of the electromagnetic wave by the moving medium
can be described correctly in the general case only if relativistic terms of order A2 are taken
into account.

Also, in this work we observe a spatial effect of the light drag at a wavelength of
A =063299 um by an optical disk with a refractive index n = 1.4766, having a radius of
Rp=0-06 m and rotating at a frequency w=25Hz. A relative shift of the interference pattern,
monitored by the time of the interference band motion across the aperture of a photodetec-
tor for the disk rotating in the opposite directions, amounted to AL =0-0076+0-0030 of the
interference bandwidth. The theoretical magnitude Ay is obtained while taking into account
the tangential break of velocity on the plane surface of the disk; moreover, the relative error
for the average value AS" is about 13%. The results of theoretical calculations of the expected
interference pattern shift on the basis of the total solution of the dispersion equation in the
experiment are in agreement with the experimental data.

2. Description of electromagnetic radiation in a medium undergoing a complex motion

We consider a medium in the half-space Z <0 which has a permittivity ¢ and a magnetic per-
meability s in a stationary frame of reference (Figure 1). There is also a medium in Z >0,
with permittivity & and magnetic permeability u, in its stationary frame of reference. We
choose a frame of reference in which the medium in Z <0 is at rest, while the other medium
is moving at uy =uj e, + urye, +us.e;, where e,, e, e, arc unit vectors. A monochromatic
plane electromagnetic wave of frequency wy is incident from the first medium on the surface
of the tangential discontinuity in the (X, ¥)-plane. The wave vector of the wave, kg, is in the
(X, Z)-plane and makes an angle ¥y with the Z-axis. According to the requirement that the
phases of the incident, refracted, and reflected waves be equal at the interface, the tangential
invariant corresponds to Iy =kg, =k, =k3,. The invariant /) = —wy=—w| =—w; corresponds
to equality of the frequencies, due to the zero normal component of the velocity of the inter-
face. Ignoring absorption and dispersion of the moving medium, we have, for this system, the
following coordinate solution for the dispersion relation [13] of the refracted wave:

wo ]/2
koo =— ["K2V22;32252772 + (nz cos? g +/<2V22$22n§) ] : (1)
where

, -1
Er=1—Pasindy, 1, =1—K2V22ﬁ§z,
L3

M)
ky=&2—1, fu=—, pfr=—,
[ C

rit=1-(f+8L). B=pL+AL

For a given law of rotation centered at the point x =0, z = Ry, the tangential and normal
components of u, correspond to

ury,=w(Ro—2z), uy,=wx, 2

where @ is the angular velocity.
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Figure 1. By virtue of the spatial effect of electromagnetic-wave dragging by a rotating medium the wave, the vector
trajectory differs from a straight line.

The angle through which the electromagnetic wave is refracted, &y, is found from the rela-
tion tan #2(x =0, z=0) =k, / k., Where kz, = (wq/c) sin ¥y. We impose a boundary on the tra-
jectory of the electromagnetic wave in the second medium: a surface of radius Ry. We require
Ry >> Xg, where kg=2m/x and X is a wavelength.

The trajectory lies in the (X, Z)-plane. The implicit equation

Xmax (x.2)

kZZ
== d 3
P (3)

&
i

0

corresponds to this trajectory. Here
Xmax (X, 2) = § 5in 28, [RO —ktan 9, + (Rg —2Rpk tan ¥y — 122)]/2] , 4)
with
k(x,2)=x—ztan ?2(x, 2),

is the coordinate of the expected intersection of the trajectory of the electromagnetic wave
with the cylindrical surface. This coordinate is drifting with x, 2.

Since there is no explicit general solution of (3), it is preferable, for reasons of accuracy,
to use the expression tant;(x,z) for numerical estimates of the curvature of the trajectory.
The geometric length of the trajectory of the electromagnetic wave in the rotating medium is
then described by the equation
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Xmax (*.2)
L =f0 \/l +ctan? ¥ (x, 7)dx. (%)

Using the expression for the geometric length of a rectilinear trajectory to the point with
coordinate Zmax, i€, Lot = +2RoZmax, We find the equivalent difference in path lengths for
waves that have traversed the path from the point (0,0) to the point (Xmax. Zmax) With @ =0
and w# 0, respectively:

dLer=na (L — Lot) . (6)

Since the refractive index, ny = ./ez/4z2, is not a function of the velocity of the medium, the
path difference due to the longitudinal Fizeau effect clearly does not enter dL... Working
from the relation for the propagation velocity of an electromagnetic wave in the medium,
¢’ =—1Iycos ¥/ kz,, we can write down an equation for the equivalent length of the trajectory:

Imax (x.7) k27 d
Le= — . 7
) .[n (—I)sin205(x.2) @

Experimentally, one could measure the accumulated difference between the path lengths tra-
versed by two electromagnetic waves which are incident on the interface between two media
at an angle 9. One of these waves would be propagating in a medium with w=0, and the
other in a medium with @ #0. This accumulated path difference corresponds to

dLe=Le — Loe. (8)

The accumulated path differences due to the traverse and longitudinal entertainment effects
are, respectively,

dLy=na(L¢— Lo). &)
dLj=Le—nsLy. (10)

Equations (5-10) determine the physical and geometric characteristics of the transformation
of an electromagnetic wave in a frame of reference with rotation.

We turn now to the results of some numerical calculations and some implications. The
basic result of the calculations is to confirm that there are curvilinear propagation trajectories
for electromagnetic waves in a medium with w#0, as follows from Equations (1) and (2). This
effect has a clear physical explanation, based on the circumstance that only one component
of the wave vector, k;, changes in a moving medium. Since the equations of electrodynamics
are written in an inertial frame of reference, there is a change in = arctan (kzx /kzZ(uz)) in
each local region of the trajectory. In order words, secondary electromagnetic waves change
direction in each local region of the trajectory because of a change in the projection of the
velocity of the atoms of the medium onto the wave vector of the excitation wave. As a result,
there is a drift of the phase velocity, and there is curvature of the trajectory representing the
superposition of all waves.

Interestingly, the wave trajectories with @ =0 and w#£0 intersect on the straight line z=Ry
for arbitrary #;. Numerical values for the transverse and longitudinal entrainment effects
are shown for comparison in Figure 2 in plots vs. ¥ for the following parameter values:
ko=10""m" !, ny =15, Rg=0-1m, w=10*rad/s. From the shape of the curves for dZ, and
dL, we conclude that there is a competition between effects for increasing values of 9¢. In the
integration, the size of the local region corresponded to = 10~°>m; a reduction of this value
had essentially no effect on the calculated results.
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Figure 2. The dependences of the equivalent path difference dL., the longitudinal component of the path difference
dL,, the transverse component of the path difference dZ, with light dragging effect for two EM waves, one of which
propagates in a medium with w=0, and another with w0, on the incident angle ¥ onto a boundary of two
media with account of the shift of an EM radiation exit point on the surface of an optical disk. The dependence
of the equivalent path difference due to bending of a trajectory without shift of an EM radiation exit point is pre-
sented as dL¢r(Po).

Calculations of the shortest distance, R, from the curvilinear trajectory, when w#0, to the
straight line, along which the light propagates when w =0, gives the deviation of the wave-
vector trajectory.

As the optical path length varies with different incident angles 9, we introduce the nor-
malized path length, which is equal to the ratio of the current path length, /;, at the i-th point
of the trajectory and the full trajectory length J=1 /Le.

The calculation for & was made for each current point of the wave-vector trajectory with
coordinates (x, z) according to the equation

R(x,7)=xcos®) —z(x)sin#?, (11)

where 19‘2) is the refractive angle for w =0.
With Equation (3) taken into account, Equation (11) can be rewritten in terms of an inte-
gral equation:

n Xmax(X.2) k X,z
R(x,z):xcosﬁzowsim?g/ -—zi-'—ldx. (12)

0 koy
The solution of the integral equation is shown in Figure 3.

As can be seen from Figure 3, the magnitude of R increases from R=0 (when ﬁg:O) to
R~10"7 m (when z?g:90°). The dependence R(J, Do) is presented in absolute values, so the
dependence is divided into two parts: before intersection with the straight trajectory, where
R >0, and after the intersection, when R <0.

It follows from Figure 2 that, for the assumed value of w and 9y~ 45°, the accumulated
pass difference is on the order of Ag for a single passage through a medium. This quantity
increases linearly upon multiple rereflection at a cylindrical surface of radius Ry, which forms
a symmetric nonconfocal resonator. There is accordingly a large margin in terms of accuracy
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Figure 3. The dependence of the shortest distance R from the trajectory of the electromagnetic-wave vector to the
straight line, along which light propagates, when w=0, and from the incident angle ¥y and normalized path length
J is shown.

for studying the relativistic curvature of the propagation trajectory of a light beam in a laser-
interference experiment.

3. Propagation of a monochromatic electromagnetic plane wave in a medium with
translational flow

Let us consider an inertial system in which a medium with dielectric permittivity &; and mag-
netic permittivity w; is at rest in a half-space Z <0, and a medium with &, 42, measured in
its own frame of reference, moving at a velocity u(x, z) = (B2, B2;) in a half-space Z>0. The
tangential velocity is discontinuous on the boundary of the two media. We assume that the
velocity field is invariable in the direction of the axis Y.

The expression for ky, imposes restrictions on its dependence on B,(x,z) regarding the
existence of analytical solutions of the equation for the wave-vector trajectory in the medium.

Using the dependence (1), when a solution z= f(x) is sought, we obtain an implicit inte-
gral equation z= f(fm““(x‘Z) f (x, z)dx, which, in general, does not have an analytical solution
[14]. Even so, there is a case allowing an analytical solution, namely when the spatial charac-
ter of the dragging effect for light appears more naturally.

Let us consider a dependence of the velocity u; on the coordinates x, z, as follows:

2 2
[42] w
B’ = = (Ro—z:)2+—c2 X, (13

which corresponds to a rotation relative to the center (0, Rp) with angular velocity o. The
dependence defines the parameters uy, = w(Rg — z), uz;, =wx as functions of the independent
coordinates. Use of the relation (13), with both components taken into account, requires the
numerical methods described in [15] since analytical methods result in increasing truncation
errors that exceed the investigated effect.

On the other hand, the spatial character of light dragging — the curvature of the wave
vector trajectory — is influenced by the tangential component of the velocity of the moving
medium. Therefore, the most interesting case to study is that of spatial dragging by a moving
medium.
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Let us consider the case involving only a tangential component of the moving medium,
B2y, but with By, =0. This corresponds to the law of drift flow with a velocity that is linearly
dependent on the distance from the boundary. Then, for the refractive angle #;, we can write

kzx) _ & (1-83(2))
k) p2(1-B2@)+ (2 —1) (1 —&B. ()

where @ =sinthy, P=cosdy, ny=/E02, P(2)=uy(2)/c.

The wave vector, ko =2m/Ag, of an incident electromagnetic wave obeys the relation kg >>
1/Ry. This allows us to use solutions of a dispersion equation for a plane electromagnetic
wave, having a tangential velocity discontinuity on the boundary between two media for each
local field in a medium.

It is more interesting for us to study the equation, describing the trajectory of kj, based
on the following analytical dependence x = f(z):

tan? 9y (z) = ( (14)

Zz
x=/ tan #;(z)dz. (15)
0

A peculiarity of the obtained expression is that the limits can be given arbitrarily. For exam-
ple, we do not have exact information about the point of intersection of the trajectory and
the given cylindrical surface with radius Ry. Therefore, the integral contains a varying upper
boundary. Also, we notice that the expression for the refractive angle is approximate and con-
tains quadratic terms; this has a principal value when the spatial dragging effect by a moving
medium is studied.

We will seek the solution of Equation (4) for a general case, For this, we will substitute it
in (14) and make a change of the variable 8,. Then, after transformations, we will get {16]:

/(ﬁx“l)dﬁx (]6)
G4(ﬁx
where
¢ &
T=————=, GYB)=(a1—B:) (@2 Bx) (By — a3) (Br ~a4),
w,/l—n%éz2
1—n2)+32
ﬁx1.2=a( nz) y nza a]:'ﬂx], a2:_~a3:19 a4=ﬁ.\’2-

1 —n%az
The expression contains the square root of a polynomial of the fourth degree, and we can
show that (16) can be presented as a combination of elliptic integrals. The integration limits

are defined by the expression 8 =82:(z1), B2=PF2.(z2) for the initial and final coordinates
of the wave-vector trajectory. Let us introduce the expression

dg;«
JSZ_[ - . (17
(Be— 1" /G (Bo)

Then, for the coordinate x, it can be written

x=°-‘[(J_2—2]~1)|£? (18)

In order that J_» can be reduced to tabulated integrals, it is necessary to increase its order.
Let us decompose G*(8,) in terms of powers of (B, — 1)

G B =bo (Be — D+ b1 (Be = 1) 6y (Be — 12+ b3 (B ~ 1)+ bg.






